Labels

ガーナ憲法和訳124 AnimeManga121 アニメまんが121 ザンビア憲法和訳119 ジンバブエ憲法和訳117 Literature114 ケニア憲法和訳114 高認化学過去問85 ドミニカ共和国憲法和訳84 オンライン補習塾83 高認物理過去問83 ウルグアイ憲法和訳82 タンザニア憲法和訳74 Education72 JapaneseHistory70 ナミビア憲法和訳70 古文・漢文70 日本史70 Story69 物語69 各国憲法インデックス和訳67 マラウイ憲法和訳66 コンゴ民主共和国憲法和訳59 アンゴラ憲法和訳56 モザンビーク憲法和訳52 法律和訳52 フリーランス時代51 ペルー憲法和訳51 パラグアイ憲法和訳50 南スーダン憲法和訳50 シエラレオネ憲法和訳49 ボツワナ憲法和訳48 ホンジュラス憲法和訳47 ルワンダ憲法和訳47 メキシコ憲法和訳46 グアテマラ憲法和訳45 チリ憲法和訳45 Blog43 パナマ憲法和訳43 ChineseHistory40 中国史40 派遣エンジニア・設備管理技術者時代40 ブルンジ憲法和訳39 エルサルバドル憲法和訳38 チャド憲法和訳37 中央アフリカ憲法和訳36 コンゴ共和国憲法和訳35 スーダン憲法和訳34 ニカラグア憲法和訳33 行政書士時代33 ガボン憲法和訳29 マダガスカル憲法和訳29 ライトノベル29 WebLog28 トーゴ憲法和訳27 DragonBall26 ドラゴンボール26 第二種電工数学入門講座26 Ghibli25 Gundam25 アルゼンチン憲法和訳25 ガンダム25 ジブリ25 Game22 TarotCard22 ゲーム22 セネガル憲法和訳22 タロットカード22 ベナン憲法和訳20 健康・医療20 カメルーン憲法和訳19 論文和訳19 Alternatives18 リベリア憲法和訳18 FamousPerson15 有名人15 Dai14 WorldHistory14 ダイの大冒険14 世界史14 海運会社員時代13 JapaneseRealEstateLaw12 不動産法入門講座12 NPO職員時代11 Hokuto10 RurouniKenshin10 るろうに剣心10 不動産営業時代10 北斗の拳10 学習進度10 ココナラ8 Treemapping7 ツリーマップ7 Poetry5 叡智3
Show more

サンクトペテルブルクのギャンブルを世界規模で行う場合の参加費。

1 サンクトペテルブルクのパラドックス

 以前、サンクトペテルブルクのパラドックスについての記事を書いたことがある。
・サンクトペテルブルクのパラドックス:https://tanakah17191928.blogspot.com/2020/02/blog-post_17.html
・サンクトペテルブルクのパラドックスを視覚化してみた。:https://tanakah17191928.blogspot.com/2023/05/blog-post_18.html
(from いらすとや

サンクトペテルブルクのギャンブルがパラドックスと言われるのは、そのは期待値を普通に計算すると無限に発散するからである。
【ゆっくり解説】無限大の賞金が得られるゲーム「サンクトペテルブルクのパラドックス」るーいのゆっくり科学

2 ウィリアム・フェラーの解答

 今回はウィリアム・フェラーの解答を用いて、このギャンブルを世界規模で行う場合の参加費を概算してみたい。

ウィリアム・フェラーの解答は少々難解で、高校数学レベルの知識では正確に理解できないけれど、その結果だけを拝借して計算に利用することにする。
ゲームを$n$回繰り返す場合、第$n$回目の獲得賞金を$X_n$とすると、

$\dfrac{X_1 + X_2 + \cdots + X_n}{n} = \log_2 n$

3 世界規模のサンクトペテルブルク・ギャンブル

 現在、世界の富は454兆4000億ドルあるらしい。

これを1ドル=150円で計算すると、$454400000000000 \times 150 = 68160000000000000$(円)となる。
このギャンブルを世界規模で行い、全世界の人々が全資産を使って参加すると考える。
参加費の合計=獲得賞金の合計=68160000000000000円として、Wolfram Alphaを使って計算してみると、

$n\log_2 n = 68160000000000000$

$n \fallingdotseq 1.35593 \times 10^{15} = 1355930000000000$


よって、1回あたりの参加費=獲得賞金は、

$68160000000000000 \div 1355930000000000 = 6816000 \div 135593 = 50.2\cdots$

約50円となる。

4 期待値

 参加費の合計=獲得賞金の合計=68160000000000000円という現実的(?)な上限がある場合として、サンクトペテルブルク・ギャンブルの期待値を普通に計算してみる。

$2^{n} \leq 68160000000000000$

$2^{55} = 36028797018963968$

$2^{56} = 72057594037927936$

$55 < n < 56$

$n = 55$のとき、期待値は$1 \times 55 = 55$(円)

サンクトペテルブルクのパラドックス(まとめ記事)に戻る。

Popular posts from this blog

高等学校卒業程度認定試験(高認)数学過去問解説

『おっさん陰陽師の友人は元SKE48(1)【竹井カナ編】』目次

『おっさん陰陽師の友人は元SKE48(3)【金城ひとみ編】』目次