Visualizing the St. Petersburg paradox
1. St. Petersburg paradox
I previously wrote an article about the St. Petersburg paradox.
・St. Petersburg paradox: https://tanakah17191928.blogspot.com/2020/02/st-petersburg-paradox.html
To make it easier to understand, I have visualized it in the graphs.
2. Money($M$) and Expected Value($E$)
Money: $M = 2^{n - 1}$,
Expected value: $E = \displaystyle \sum_{k = 1}^{n} \left( \dfrac{1}{2^k} \cdot 2^{k - 1} \right) = \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2} + \cdots = \dfrac{1}{2}n$
(10 dollars)
(100 dollars)
(100 million dollars)